- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Al_Duniawi, Mohammed (1)
-
Avllazagaj, Erin (1)
-
Botacin, Marcus (1)
-
DumitraČ™, Tudor (1)
-
Guo, Qiming (1)
-
Kwon, Yonghwi (1)
-
Nayan, Tushar (1)
-
Sun, Ruimin (1)
-
Uluagac, Selcuk (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
Balzarotti, Davide (2)
-
Xu, Wenyuan (2)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Balzarotti, Davide; Xu, Wenyuan (Ed.)Kernel privilege-escalation exploits typically leverage memory-corruption vulnerabilities to overwrite particular target locations. These memory corruption targets play a critical role in the exploits, as they determine which privileged resources (e.g., files, memory, and operations) the adversary may access and what privileges (e.g., read, write, and unrestricted) they may gain. While prior research has made important advances in discovering vulnerabilities and achieving privilege escalation, in practice, the exploits rely on the few memory corruption targets that have been discovered manually so far. We propose SCAVY, a framework that automatically discovers memory corruption targets for privilege escalation in the Linux kernel. SCAVY's key insight lies in broadening the search scope beyond the kernel data structures explored in prior work, which focused on function pointers or pointers to structures that include them, to encompass the remaining 90% of Linux kernel structures. Additionally, the search is bug-type agnostic, as it considers any memory corruption capability. To this end, we develop novel and scalable techniques that combine fuzzing and differential analysis to automatically explore and detect privilege escalation by comparing the accessibility of resources between executions with and without corruption. This allows SCAVY to determine that corrupting a certain field puts the system in an exploitable state, independently of the vulnerability exploited. SCAVY found 955 PoC, from which we identify 17 new fields in 12 structures that can enable privilege escalation. We utilize these targets to develop 6 exploits for 5 CVE vulnerabilities. Our findings show that new memory corruption targets can change the security implications of vulnerabilities, urging researchers to proactively discover memory corruption targets.more » « less
-
Nayan, Tushar; Guo, Qiming; Al_Duniawi, Mohammed; Botacin, Marcus; Uluagac, Selcuk; Sun, Ruimin (, USENIX)Balzarotti, Davide; Xu, Wenyuan (Ed.)On-device ML is increasingly used in different applications. It brings convenience to offline tasks and avoids sending user-private data through the network. On-device ML models are valuable and may suffer from model extraction attacks from different categories. Existing studies lack a deep understanding of on-device ML model security, which creates a gap between research and practice. This paper provides a systematization approach to classify existing model extraction attacks and defenses based on different threat models. We evaluated well known research projects from existing work with real-world ML models, and discussed their reproducibility, computation complexity, and power consumption. We identified the challenges for research projects in wide adoption in practice. We also provided directions for future research in ML model extraction security.more » « less
An official website of the United States government

Full Text Available